Capillarity and dynamic wetting
نویسنده
چکیده
In this thesis capillary dominated two–phase flow is studied by means of numerical simulations and experiments. The theoretical basis for the simulations consists of a phase field model, which is derived from the system’s thermodynamics, and coupled with the Navier Stokes equations. Two types of interfacial flow are investigated, droplet dynamics in a bifurcating channel and spontaneous capillary driven spreading of drops. Microfluidic and biomedical applications often rely on a precise control of droplets as they traverse through complicated networks of bifurcating channels. Three–dimensional simulations of droplet dynamics in a bifurcating channel are performed for a set of parameters, to describe their influence on the resulting droplet dynamics. Two distinct flow regimes are identified as the droplet interacts with the tip of the channel junction, namely, droplet splitting and nonsplitting. A flow map based on droplet size and Capillary number is proposed to predict whether the droplet splits or not in such a geometry. A commonly occurring flow is the dynamic wetting of a dry solid substrate. Both experiments and numerical simulations of the spreading of a drop are presented here. A direct comparison of the two identifies a new parameter in the phase field model that is required to accurately predict the experimental spreading behavior. This parameter μf [Pa · s], is interpreted as a friction factor at the moving contact line. Comparison of simulations and experiments for different liquids and surface wetting properties enabled a measurement of the contact line friction factor for a wide parameter space. Values for the contact line friction factor from phase field theory are reported here for the first time. To identify the physical mechanism that governs the droplet spreading, the different contributions to the flow are measured from the simulations. An important part of the dissipation may arise from a friction related to the motion of the contact line itself, and this is found to be dominating both inertia and viscous friction adjacent to the contact line. A scaling law based on the contact line friction factor collapses the experimental data, whereas a conventional inertial or viscous scaling fails to rationalize the experimental observation, supporting the numerical finding. Descriptors: Phase field theory, finite element simulations, experiments, two– phase flow, dynamic wetting, contact line physics, capillarity.
منابع مشابه
Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity.
Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug delivery at the micro- or nanoscale, is...
متن کاملThin Films in Partial Wetting: Internal Selection of Contact-Line Dynamics.
When a liquid touches a solid surface, it spreads to minimize the system's energy. The classic thin-film model describes the spreading as an interplay between gravity, capillarity, and viscous forces, but it cannot see an end to this process as it does not account for the nonhydrodynamic liquid-solid interactions. While these interactions are important only close to the contact line, where the ...
متن کاملGrowth and wetting of water droplet condensed between micron-sized particles and substrate
We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact an...
متن کاملFree-energy landscape of nucleation with an intermediate metastable phase studied using capillarity approximation.
Capillarity approximation is used to study the free-energy landscape of nucleation when an intermediate metastable phase exists. The critical nucleus that corresponds to the saddle point of the free-energy landscape as well as the whole free-energy landscape can be studied using this capillarity approximation, and various scenarios of nucleation and growth can be elucidated. In this study, we c...
متن کاملWetting and cavitation pathways on nanodecorated surfaces† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sm02794b Click here for additional data file.
In this contribution we study the wetting and nucleation of vapor bubbles on nanodecorated surfaces via free energy molecular dynamics simulations. The results shed light on the stability of superhydrophobicity in submerged surfaces with nanoscale corrugations. The re-entrant geometry of the cavities under investigation is capable of sustaining a confined vapor phase within the surface roughnes...
متن کامل